6.4.2 Angles and Tangents of Circles (Sample Questions)



Example 1:
In the diagram, PQR is a tangent to the circle QSTU at Q.

Find the value of y.
 
Solution:
Angle QUT 
= 180o– 98o(opposite angle in cyclic quadrilateral QSTU )
= 82o
Angle QTU = 75o  ← (angle in alternate segment)
Therefore y= 180o – (82o + 75o)  ← (Sum of interior angles in ∆ QTU)
= 23o


Example 2:
In the diagram, PQR is a tangent to the circle QSTU at Q.


Find the values of
(a) x   (b) y
 
Solution:
(a)
UTS + ∠UQS = 180o ←(opposite angle in cyclic quadrilateral QSTU)
105o + ∠ UQS = 180o
UQS = 75o
x+ 75o + 20o = 180o(the sum of angles on a straight line PQR = 180o)
x+ 95o = 180o
= 85o
 
(b) 
PQU = ∠ QSU  ← (angle in alternate segment)
85o = 35o + y
y = 50o


Example 3:

In the diagram, ABC is a tangent to the circle BDE with centre O, at B.
Find the value of x.
 

Solution:


B E D = C B D = 54 B D E = 180 54 2 = 63 Isosceles triangle E B D = E D B A B E = B D E = 63 In A B E , x + 45 + 63 = 180 x + 108 = 180 x = 72

Leave a Comment