7.2.3 Linear Inequalities, PT3 Focus Practice


Question 8:
Given that 3<x2<4 and x is an integer. List all the possible values of x.Given that 3<x2<4 and x is an integer. List all the possible values of x.

Solution:

3<x2<432<x2<429<x2x>11 or   x2<16x<1811<x<18x=12, 13, 14, 15, 16, 173<x2<432<x2<429<x2x>11 or   x2<16x<1811<x<18x=12, 13, 14, 15, 16, 17


Question 9:
Find the biggest and the smallest integer of x that satisfy
3x + 2 ≥ –4 and 4 – x > 0.

Solution:
3x + 2 ≥ –4
3x ≥ –4 – 2
3x ≥ –6
x ≥ –2

4 – x > 0
x > –4
x < 4

Smallest integer of x is –2, and the biggest integer of x is 3.



Question 10:
If xhy satisfy the two inequalities 7h25 and 3(h+2)20+h, find the values of x and y.If xhy satisfy the two inequalities 7h25 and 3(h+2)20+h, find the values of x and y.

Solution:

7h25h257h4h43(h+2)20+h3h+620+h2h14h74h7x=4,y=7

Leave a Comment