5.2.6 Circles, PT3 Focus Practice


Question 14:
In the Diagram, OKLM is a sector of a circle and OAB is a quadrant of a circle with common centre O.


It is given that OA = 8 cm, ∠KOM = 90o and OK : OB = 3 : 2.
Using  π= 22 7 , calculate
(a) the area, in cm2, of the shaded region,
(b) the perimeter, in cm, of the shaded region.


Solution:
(a)
OB=OA=8 cm and OK:OB=3:2 OK OB = 3 2 OK 8 = 3 2 OK= 3 2 ×8 OK=12 Area of the shaded region =( 270 o 360 o × 22 7 × 12 2 )( 90 o 360 o × 22 7 × 8 2 ) =339 3 7 50 2 7 =289 1 7  cm 2


(b)
Length of arc KLM = 270 o 360 o ×2× 22 7 ×12 =56 4 7  cm Length of arc AB = 90 o 360 o ×2× 22 7 ×8 =12 4 7  cm Perimeter of shaded region =Length of arc KLM+Length of  arc AB+MO+OK+OA+OB =56 4 7 +12 4 7 +12+12+8+8 =109 1 7  cm



Question 15:
Diagram shows sectors OABC and ODE with the common centre respectively.


Calculate
(a) the perimeter, in cm, of the whole diagram,
(b) the area, in cm2, of the shaded region.



Solution:
(a)

Perimeter of the whole diagram =OP+PE+Arc DE+DC +Arc CBA+AO =10+5+( 50 o 360 o ×2× 22 7 ×15 )+5 +( 230 o 360 o ×2× 22 7 ×10 )+10 =30+ 275 21 + 2530 63 = 5245 63 =83.254 cm


(b)
Area of the shaded region =( 230 o 360 o × 22 7 × 10 2 ) +[ ( 50 o 360 o × 22 7 × 15 2 )( 50 o 360 o × 22 7 × 10 2 ) ] = 12650 63 +( 1375 14 2750 63 ) = 3575 14 =255.36  cm 2


Leave a Comment