5.2.2 Trigonometric Ratios, PT3 Focus Practice


Question 4:
In the diagram, PQR and QTS are straight lines.


It is given that tany= 3 4 , calculate the length, in cm, of RS.

Solution:
In  PQT, tany= PQ QT 3 4 = 6 QT QT=6× 4 3  =8 cm In QRS, QS=8+8=16 cm R S 2 = 12 2 + 16 2   pythagoras’ Theorem     =144+256   =400 RS= 400  =20 cm



Question 5:
In the diagram, PQR is a straight line.

It is given that   cos x o = 3 5 , hence sin yo =

Solution:
cos x o = PQ PS PQ 10 = 3 5 PQ= 3 5 ×10  =6 cm QR=PRPQ =216 =15 cm


Q S 2 = 10 2 6 2  pythagoras' Theorem     =10036    =64 QS= 64  =8 cm R S 2 = 15 2 + 8 2    =225+64    =289 RS= 289  =17 cm sin y o = 15 17


Question 6:
In diagram below, ABE and DBC are two right-angled triangles ABC and DEB are straight lines.


It is given that cos y o = 3 5 .
(a) Find the value of tan xo.
(b) Calculate the length, in cm, of DE.

Solution:
(a) tan x o = 7 24

(b) cos y o = BC 20    3 5 = BC 20 BC= 3 5 ×20  =12 cm B D 2 = 20 2 12 2   =400144   =256 BD= 256  =16 cm DE=167   =9 cm

Leave a Comment