2.2.2 Factorisation and Algebraic Fractions, PT3 Practice


Question 5:
(a) Simplify:
(m – 4n)(m + 4n) – m2
(b) Simplify: 3 x 3 y x + y × 2 x + 2 y 6 x  

Solution:
(a)
(m – 4n)(+ 4n) – m2
= m2 + 4mn – 4mn – 4n2m2
= 0
 
(b)
3 x 3 y x + y × 2 x + 2 y 6 x = 3 ( x y ) x + y × 2 ( x + y ) 6 x = x y x



Question 6:
(a) Simplify each of the following:
(i) 12 m n 32 (ii) x 2 x y x
(b) Express 1 2 q 2 p 7 6 q  as a single fraction in its simplest form.

Solution:

(a)(i) 12 m n 32 = 3 m n 8 (a)(ii) x 2 x y x = x ( x y ) x = x y

(b)

1 2 q 2 p 7 6 q = 1 × 3 2 q × 3 ( 2 p 7 ) 6 q = 3 2 p + 7 6 q = 10 2 p 6 q = 2 ( 5 p ) 3 6 q = 5 p 3 q


Question 7:
(a) Factorise 2ae + 3af – 6de – 9df
(b)   Simplify a 2 b 2 ( a + b ) 2

Solution:
(a)
2ae + 3af – 6de – 9df = (2+ 3f ) – 3d (2e + 3f)
= (2+ 3f ) (a – 3d)

(b)
a 2 b 2 ( a + b ) 2 = ( a + b ) ( a b ) ( a + b ) ( a + b ) = a b a + b


Question 8:
(a) Factorise –8c2 – 12ac.
(b)   Simplify a e + a d 2 b e 2 b d a 2 4 b 2 .  

Solution:
(a)
–8c2– 12ac
= –4c (2c + 3a)

(b)
a e + a d 2 b e 2 b d a 2 4 b 2 = a ( e + d ) 2 b ( e + d ) ( a + 2 b ) ( a 2 b ) = ( e + d ) ( a 2 b ) ( a + 2 b ) ( a 2 b ) = e + d a + 2 b

Leave a Comment